Selasa, 17 Januari 2012

Program Persamaan Linear

         PERSAMAAN LINEAR adalah sebuah persamaaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus.



Contoh grafik dari suatu persamaan linear dengan nilai m=0,5 dan b=2 (garis merah).
Bentuk umum untuk persamaan linear adalah :
y = mx + b.\,
Dalam hal ini, konstanta m akan menggambarkan gradien garis, dan konstanta b merupakan titik potong garis dengan sumbu-y. Persamaan lain, seperti x3, y1/2, dan xy bukanlah persamaan linear.

Contoh sistem persamaan linear dua variabel:
x + 2y = 10,\,,
3b + 5c = 4d+ 20,\,,
5x - 3y +6 = -9x + 8y+ 4,\,

Sistem Persamaan Linear Dua Variabel

Persamaan linear yang rumit, seperti di sebut di atas, bisa ditulis dengan menggunakan hukum aljabar agar menjadi bentuk yang lebih sederhana. Seperti contoh, huruf besar di persamaan merupakan konstanta, dan x dan y adalah variabelnya.

Bentuk Umum

Ax + By + C = 0,\,
dimana konstanta A dan B bila dijumlahkan, hasilnya bukan angka nol. Konstanta dituliskan sebagai A ≥ 0, seperti yang telah disepakati ahli matematika bahwa konstanta tidak boleh sama dengan nol. Grafik persamaan ini bila digambarkan, akan menghasilkan sebuah garis lurus dan setiap garis dituliskan dalam sebuah persamaan seperti yang tertera diatas. Bila A ≥ 0, dan x sebagai titik potong, maka titik koordinat-xadalah ketika garis bersilangan dengan sumbu-x (y = 0) yang digambarkan dengan rumus -c/a. Bila B≥ 0, dan y sebagai titik potong, maka titik koordinat- y adalah ketika garis bersilangan dengan sumbu-y (x = 0), yang digambarkan dengan rumus -c/b.

 Bentuk standar

ax + by = c,\,
di mana, a dan b jika dijumlahkan, tidak menghasilkan angka nol dan a bukanlah angka negatif. Bentuk standar ini dapat diubah ke bentuk umum, tapi tidak bisa diubah ke semua bentuk, apabila a dan b adalah nol.

Bentuk titik potong gradien

Sumbu-y

y = mx + b,\,
dimana m merupakan gradien dari garis persamaan, dan titik koordinat y adalah persilangan dari sumbu-y. Ini dapat digambarkan dengan x = 0, yang memberikan nilai y = b. Persamaan ini digunakan untuk mencari sumbu-y, dimana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik. Sedangkan X merupakan koordinat x yang anda taruh di grafik.

Sumbu-x

x = \frac{y}{m} + c,\,
dimana m merupakan gradien dari garis persamaan, dan c adalah titik potong-x, dan titik koordinat x adalah persilangan dari sumbu-x. Ini dapat digambarkan dengan y = 0, yang memberikan nilai x = c. Bentuk y/m dalam persamaan sendiri berarti bahwa membalikkan gradien dan mengalikannya dengan y. Persamaan ini tidak mencari titik koordinat x, dimana nilai y sudah diberikan.

Sistem persamaan linear lebih dari dua variabel

Sebuah persamaan linear bisa mempunyai lebih dari dua variabel, seperti berikut ini:
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.
di mana dalam bentuk ini, digambarkan bahwa a1 adalah koefisien untuk variabel pertama, x1, dan n merupakan jumlah variabel total, serta b adalah konstanta.

Persamaan Linier Satu Variabel
Persamaan linier satu variable adalah persamaan yang hanya menggunakan satu variable saja (hanya satu variable)
1. Kalimat terbuka
Kalimat terbuka adalah kalimat matematika yang belum jelas benar dan salahnya.
Kalimat pernyataan adalah kalimat yang mempunyai nilai benar atau salah
Contoh kalimat benar

  • Jumlah dari enam dan dua adalah delapan
  • Enam dikurangi dua adalah empat
Contoh kalimat salah

  • Tujuh habis dibagi tiga
  • Persegi memiliki satu sisi
Jadi, 

  • Kalimat benar adalah kalimat yang pernyataannya memiliki nilai benar
  • Kalimat salah adalah kalimat yang pernyataannya memiliki nilai salah
2. Persamaan linier Satu Variabel
Pesamaan linier satu variable adalah persamaan yang hanya menggunakan satu variable saja (hanya satu variable)
Bentuk umum
ax + b = c   0, x = perubah
Persamaan linier dapat diselesaikan dengan cara

  • Menambah, mengurangi, membagi atau mengali dengan bilangan yang sama
  • Setiap pemindahan ruas, dari kirikekanan atau sebaliknya dapat diikuti perubahan tanda dari positif ke negatif atau sebaliknya.
Contoh :

1.  4x -12 = 20
Jawab
4x -12 = 20
4x = 20 + 12
4x = 32
x= 8
2.  5x -20 = 10
Jawab
5x – 20 = 10
5x = 20 + 10
5x = 30
x = 6
     Penerapan Untuk Persamaan Linier dalam Sehari-hari
Contoh :
Jumlah siswa kelas 2 adalah 40 siswa. Jika jumlah siswa laki-laki sebanyak 12 siswa, berapa jumlah siswa perempuan.
Jawab
a + 12 = 40
a = 40 -12
a = 28

Tidak ada komentar:

Posting Komentar